domingo, 30 de noviembre de 2014

4.7 Derivadas de orden superior y regla L' Hopital.

Derivadas de orden superior.
Sea f(x) una función diferenciable, entonces se dice que f '(x) es la primera derivada de f(x). Puede resultar f '(x) ser una función derivable, entonces podriamos encontrar su segunda derivada, es decir f(x). Mientras las derivadas cumplan ser funciones continuas y que sean derivables podemos encontrar la n-ésima derivada. A estas derivadas se les conoce como derivadas de orden superior.
Regla del L´ Hopital.
En matemática, más específicamente en el cálculo diferencial, la regla de l'Hôpital o regla de l'Hôpital-Bernoulli1 es una regla que usa derivadas para ayudar a evaluar límites de funciones que estén en forma indeterminada.
Sean f y g dos funciones continuas definidas en el intervalo [a,b], derivables en (a,b) y sea c perteneciente a (a,b) tal que f(c)=g(c)=0 y g'(x)≠0 si xc.
Si existe el límite L de f'/g' en c, entonces existe el límite de f/g (en c) y es igual a L. Por lo tanto,

   \lim_{x \to c}{f(x)\over g(x)} =
   \lim_{x \to c}{f'(x) \over g'(x)} = L



No hay comentarios:

Publicar un comentario