domingo, 19 de octubre de 2014

2.8 Funciones Inversas. Logarítmicas. Trigonométricas.

FUNCIONES INVERSAS.- Son dos funciones tales que a todo punto de la gráfica
de la primera función corresponde un punto de la gráfica de la segunda, de tal
manera que la abscisa de cada punto de la primera es igual a la ordenada del
punto correspondiente de la otra y viceversa; es decir, a todo punto de la primera
curva corresponde, en la segunda, otro punto simétrico con respecto a la bisectriz
del ángulo XOY.


FUNCIONES LOGARÍTMICAS.- Una función se llama logarítmica cuando es de la forma y = log a x donde la base a es un número real y positivo pero distinto de 1
En la función logarítmica (cuando a > 1) cuanto mayor es la base del logaritmo, más cerca del eje X está.
Las funciones de la forma y = log a x cuando la base es mayor que la unidad (a > 1) tienen las siguientes características:
(tomando como ejemplo la función f (x) = log 5 x)
-Dominio: el dominio de la función son los reales positivos puesto que no existe el logaritmo de un número negativo. Dom (f) = R +

FUNCIONES TRIGONOMÉTRICAS.- son las funciones que se definen a fin de extender la definición de las razones trigonométricas a todos los números reales.
surgen de una forma natural al estudiar el triángulo rectángulo y observar que las razones (cocientes) entre las longitudes de dos cualesquiera de sus lados sólo dependen del valor de los ángulos del triángulo.


No hay comentarios:

Publicar un comentario